Overview

cryogenic electron microscopy image of atoms
Atomic-resolution cryogenic electron microscopy

Quantum materials host a myriad of fascinating structural, electronic and magnetic ground states as well as complex behaviors ranging from the nanoscale coexistence of competing phases to a huge sensitivity to external stimuli. Our laboratory utilizes in situ electron microscopy to visualize and manipulate these materials at the atomic scale.


Techniques

The instrument at the heart of our research is the scanning transmission electron microscope (STEM) which provides vivid atomic-resolution images of crystalline materials. To access and manipulate the rich phases of quantum materials, both ultra-stable cryogenic sample holders and in situ control knobs are essential.

High-resolution cryogenic STEM imaging near 90 K was recently demonstrated, enabling unprecedented microscopic insights such as the direct visualization of the picometer scale distortions that accompany charge and orbital order.

In our lab, we strive to couple cryogenic STEM imaging (down to liquid helium temperatures) with in situ and ex situ electrical excitation. This combination will allow us to not only correlate atomic-scale insights with the macroscopic electronic properties of quantum materials but also to induce novel phenomena in these materials.

Map of atomic displacements in a charge-ordered material


Picometer-scale atomic displacements in the charge order phase of manganites




Topics

The materials we study range from bulk complex oxides to atomically engineered heterointerfaces to quasi-2D and quasi-1D compounds. These systems are a rich playground for studying phenomena such as charge and orbital order, superconductivity, phase separation, ferroelectricity and quantum criticality.

We are also interested in fundamentally understanding phase transitions by directly visualizing order and disorder. For example, through real space observations of topological defects in charge-ordered stripes, we revealed how phase fluctuations alter long range ordering.

Building on this, our lab will develop a platform to image non-equilibrium transitions and metastable states driven by electrical current and/or light pulses.

Light-induced charge density wave dislocation boundary
Light-induced charge density wave dislocation boundary

Latest Posts

Links to online talks on quantum materials

A compilation of recorded colloquia, seminars and schools on quantum materials research.

We are hiring

We are hiring! We have positions at the post-doctoral and undergraduate levels. See the opportunities tab for more details. The lab will open in mid-September 2020.